I mentioned briefly in a different post an idea that’s been floating around in my head for a while: the pure capitalism can’t drive science. Or rather, that it can’t be the only driver. In making the case for basic science, I argued that government funding is necessary, because while the benefits of basic science are tangible, they’re often long-term and thus not attractive for profit-based investment.

When I wrote that I thought to myself, “I should probably cite that.” I know I’ve read it in several places, that basic science has tangible benefits. At the time, I was on a roll with thinking about open access and didn’t find the source. But now, serendipitously, an article in PLoS ONE popped up on my radar. It was just published last week and it has some interesting conclusions about science research and economic development.

As an aside, I’m a filthy idealist and I think that basic science is worth pursuing just increase our level of knowledge about the world we live in. I’m not religious, but what better way to celebrate our wonder at the amazing world we live in, than to try to understand it? Anyways, I also acknowledge that idealism doesn’t make the best argument, especially when many people don’t share your idealism. Also, research costs a lot of money, so some justification is needed for how we spend that money–we can’t just fund everything!

But this article came out in PLoS ONE, just in time for me to think about how I should better justify my statement that basic research has tangible benefits. The article links scientific research to economic growth and examines the utility of using one to track the other. Now, they don’t claim that investing in scientific output will trigger economic growth, rather they suggest that economic growth allows sustained, long-term economic development. One surprising conclusion is that applied research (such at agriculture, medicine, and pharmacy) is not the best indicator for economic development, but rather physics, chemistry, and materials science research. Specifically, countries who had higher relative productivity* in basic sciences had higher economic growth in the following five years. The authors suggest that mid-level economic countries would do best by investing in basic sciences, because as they note, “technology without science is unlikely to be sustainable.” Another tidbit that I found to be quite interesting was the idea that “individual specialization begets diversity at the national and global level.” It totally makes sense, but it also provides a good incentive for national or federal science programs to encourage training people in a variety of fields.

I’ll leave the authors themselves to summarize their conclusions:

  1. For historical periods with no global financial catastrophes, the economic growth of middle income countries can be predicted with high accuracy by looking at their relative academic productivity in physical sciences and engineering.
  2. Academic productivity is a much better predictor of future economic growth than economic complexity as measured in [16]. Scientific productivity is more accurate in predicting economic growth and wealth, than economic complexity. If we accept that “science is the mother of technology”, i.e. supports technological development, then science affects other aspects of live such as services, governability, rational thinking, attitudes, etc. and of the economy besides technological development[12][23]. This result is congruent with other statistical analyses comparing the information content of statistical models using ECI with those using scientific productivity to predict economic growth [24].
  3. No country with exclusive preferential investment in technology, without investment in basic science, achieved relatively high economic development. Thus, technology without science is unlikely to be sustainable.
  4. The effect on the economy of scientific development is long term. It can be observed in 5 years’ time. This time period is very short in terms of the process by which science creates new technology. Thus, we might be measuring the effect of science in preparing new technology leaders and in instilling rational thinking in the leaders of a country rather than the production of novel technology in middle income countries.
  5. No direct correlation between development in basic science and economic growth, or vice versa, exists. We suggest that the effect mentioned in point 1 is possible the outcome of the fact that relative investment in basic science is a reliable indicator of a rational decision making atmosphere, and if other factors allow, promotes economic growth.

Number 5 is really, really important. Blind investment in science isn’t what we want, but we want to foster an environment where investment in science is supported and encouraged. Getting more people who are more scientifically literate involved in government and decision-making processes is one way to help this; another is improving our educational system in the STEM fields.

So the next time I get asked, “what is the application of your research?” I can just answer: “economic growth.”

*calculated as a percentage of the country’s total scientific output

Jaffe K, Caicedo M, Manzanares M, Gil M, Rios A, et al. (2013) Productivity in Physical and Chemical Science Predicts the Future Economic Growth of Developing Countries Better than Other Popular Indices. PLoS ONE 8(6): e66239. doi:10.1371/journal.pone.0066239